Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Sci Data ; 10(1): 370, 2023 Jun 08.
Article in English | MEDLINE | ID: covidwho-20243971

ABSTRACT

Monitoring asthma is essential for self-management. However, traditional monitoring methods require high levels of active engagement, and some patients may find this tedious. Passive monitoring with mobile-health devices, especially when combined with machine-learning, provides an avenue to reduce management burden. Data for developing machine-learning algorithms are scarce, and gathering new data is expensive. A few datasets, such as the Asthma Mobile Health Study, are publicly available, but they only consist of self-reported diaries and lack any objective and passively collected data. To fill this gap, we carried out a 2-phase, 7-month AAMOS-00 observational study to monitor asthma using three smart-monitoring devices (smart-peak-flow-meter/smart-inhaler/smartwatch), and daily symptom questionnaires. Combined with localised weather, pollen, and air-quality reports, we collected a rich longitudinal dataset to explore the feasibility of passive monitoring and asthma attack prediction. This valuable anonymised dataset for phase-2 of the study (device monitoring) has been made publicly available. Between June-2021 and June-2022, in the midst of UK's COVID-19 lockdowns, 22 participants across the UK provided 2,054 unique patient-days of data.


Subject(s)
Asthma , Machine Learning , Humans , Communicable Disease Control , Computers, Handheld , Surveys and Questionnaires , Datasets as Topic
2.
PLoS Med ; 20(1): e1004156, 2023 01.
Article in English | MEDLINE | ID: covidwho-2196862

ABSTRACT

BACKGROUND: Brazil and Scotland have used mRNA boosters in their respective populations since September 2021, with Omicron's emergence accelerating their booster program. Despite this, both countries have reported substantial recent increases in Coronavirus Disease 2019 (COVID-19) cases. The duration of the protection conferred by the booster dose against symptomatic Omicron cases and severe outcomes is unclear. METHODS AND FINDINGS: Using a test-negative design, we analyzed national databases to estimate the vaccine effectiveness (VE) of a primary series (with ChAdOx1 or BNT162b2) plus an mRNA vaccine booster (with BNT162b2 or mRNA-1273) against symptomatic Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and severe COVID-19 outcomes (hospitalization or death) during the period of Omicron dominance in Brazil and Scotland compared to unvaccinated individuals. Additional analyses included stratification by age group (18 to 49, 50 to 64, ≥65). All individuals aged 18 years or older who reported acute respiratory illness symptoms and tested for SARS-CoV-2 infection between January 1, 2022, and April 23, 2022, in Brazil and Scotland were eligible for the study. At 14 to 29 days after the mRNA booster, the VE against symptomatic SARS-CoV-2 infection of ChAdOx1 plus BNT162b2 booster was 51.6%, (95% confidence interval (CI): [51.0, 52.2], p < 0.001) in Brazil and 67.1% (95% CI [65.5, 68.5], p < 0.001) in Scotland. At ≥4 months, protection against symptomatic infection waned to 4.2% (95% CI [0.7, 7.6], p = 0.02) in Brazil and 37.4% (95% CI [33.8, 40.9], p < 0.001) in Scotland. VE against severe outcomes in Brazil was 93.5% (95% CI [93.0, 94.0], p < 0.001) at 14 to 29 days post-booster, decreasing to 82.3% (95% CI [79.7, 84.7], p < 0.001) and 98.3% (95% CI [87.3, 99.8], p < 0.001) to 77.8% (95% CI [51.4, 89.9], p < 0.001) in Scotland for the same periods. Similar results were obtained with the primary series of BNT162b2 plus homologous booster. Potential limitations of this study were that we assumed that all cases included in the analysis were due to the Omicron variant based on the period of dominance and the limited follow-up time since the booster dose. CONCLUSIONS: We observed that mRNA boosters after a primary vaccination course with either mRNA or viral-vector vaccines provided modest, short-lived protection against symptomatic infection with Omicron but substantial and more sustained protection against severe COVID-19 outcomes for at least 3 months.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2/genetics , Brazil/epidemiology , BNT162 Vaccine , Case-Control Studies , Scotland/epidemiology , RNA, Messenger
4.
Nat Commun ; 13(1): 6124, 2022 Oct 17.
Article in English | MEDLINE | ID: covidwho-2077055

ABSTRACT

Data on the safety of COVID-19 vaccines in early pregnancy are limited. We conducted a national, population-based, matched cohort study assessing associations between COVID-19 vaccination and miscarriage prior to 20 weeks gestation and, separately, ectopic pregnancy. We identified women in Scotland vaccinated between 6 weeks preconception and 19 weeks 6 days gestation (for miscarriage; n = 18,780) or 2 weeks 6 days gestation (for ectopic; n = 10,570). Matched, unvaccinated women from the pre-pandemic and, separately, pandemic periods were used as controls. Here we show no association between vaccination and miscarriage (adjusted Odds Ratio [aOR], pre-pandemic controls = 1.02, 95% Confidence Interval [CI] = 0.96-1.09) or ectopic pregnancy (aOR = 1.13, 95% CI = 0.92-1.38). We undertook additional analyses examining confirmed SARS-CoV-2 infection as the exposure and similarly found no association with miscarriage or ectopic pregnancy. Our findings support current recommendations that vaccination remains the safest way for pregnant women to protect themselves and their babies from COVID-19.


Subject(s)
Abortion, Spontaneous , COVID-19 Vaccines , COVID-19 , Influenza, Human , Pregnancy, Ectopic , Female , Humans , Pregnancy , Abortion, Spontaneous/epidemiology , Cohort Studies , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Influenza, Human/prevention & control , Pregnancy Outcome , SARS-CoV-2 , Vaccination
5.
Lancet ; 400(10360): 1305-1320, 2022 10 15.
Article in English | MEDLINE | ID: covidwho-2069811

ABSTRACT

BACKGROUND: Current UK vaccination policy is to offer future COVID-19 booster doses to individuals at high risk of serious illness from COVID-19, but it is still uncertain which groups of the population could benefit most. In response to an urgent request from the UK Joint Committee on Vaccination and Immunisation, we aimed to identify risk factors for severe COVID-19 outcomes (ie, COVID-19-related hospitalisation or death) in individuals who had completed their primary COVID-19 vaccination schedule and had received the first booster vaccine. METHODS: We constructed prospective cohorts across all four UK nations through linkages of primary care, RT-PCR testing, vaccination, hospitalisation, and mortality data on 30 million people. We included individuals who received primary vaccine doses of BNT162b2 (tozinameran; Pfizer-BioNTech) or ChAdOx1 nCoV-19 (Oxford-AstraZeneca) vaccines in our initial analyses. We then restricted analyses to those given a BNT162b2 or mRNA-1273 (elasomeran; Moderna) booster and had a severe COVID-19 outcome between Dec 20, 2021, and Feb 28, 2022 (when the omicron (B.1.1.529) variant was dominant). We fitted time-dependent Poisson regression models and calculated adjusted rate ratios (aRRs) and 95% CIs for the associations between risk factors and COVID-19-related hospitalisation or death. We adjusted for a range of potential covariates, including age, sex, comorbidities, and previous SARS-CoV-2 infection. Stratified analyses were conducted by vaccine type. We then did pooled analyses across UK nations using fixed-effect meta-analyses. FINDINGS: Between Dec 8, 2020, and Feb 28, 2022, 16 208 600 individuals completed their primary vaccine schedule and 13 836 390 individuals received a booster dose. Between Dec 20, 2021, and Feb 28, 2022, 59 510 (0·4%) of the primary vaccine group and 26 100 (0·2%) of those who received their booster had severe COVID-19 outcomes. The risk of severe COVID-19 outcomes reduced after receiving the booster (rate change: 8·8 events per 1000 person-years to 7·6 events per 1000 person-years). Older adults (≥80 years vs 18-49 years; aRR 3·60 [95% CI 3·45-3·75]), those with comorbidities (≥5 comorbidities vs none; 9·51 [9·07-9·97]), being male (male vs female; 1·23 [1·20-1·26]), and those with certain underlying health conditions-in particular, individuals receiving immunosuppressants (yes vs no; 5·80 [5·53-6·09])-and those with chronic kidney disease (stage 5 vs no; 3·71 [2·90-4·74]) remained at high risk despite the initial booster. Individuals with a history of COVID-19 infection were at reduced risk (infected ≥9 months before booster dose vs no previous infection; aRR 0·41 [95% CI 0·29-0·58]). INTERPRETATION: Older people, those with multimorbidity, and those with specific underlying health conditions remain at increased risk of COVID-19 hospitalisation and death after the initial vaccine booster and should, therefore, be prioritised for additional boosters, including novel optimised versions, and the increasing array of COVID-19 therapeutics. FUNDING: National Core Studies-Immunity, UK Research and Innovation (Medical Research Council), Health Data Research UK, the Scottish Government, and the University of Edinburgh.


Subject(s)
COVID-19 , Aged , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , England/epidemiology , Female , Humans , Immunization, Secondary , Immunosuppressive Agents , Male , Northern Ireland , Prospective Studies , SARS-CoV-2 , Scotland , Vaccination , Wales/epidemiology
6.
Lancet Reg Health Eur ; 23: 100513, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2049611

ABSTRACT

Background: The two-dose BNT162b2 (Pfizer-BioNTech) vaccine has demonstrated high efficacy against COVID-19 disease in clinical trials of children and young people (CYP). Consequently, we investigated the uptake, safety, effectiveness and waning of the protective effect of the BNT162b2 against symptomatic COVID-19 in CYP aged 12-17 years in Scotland. Methods: The analysis of the vaccine uptake was based on information from the Turas Vaccination Management Tool, inclusive of Mar 1, 2022. Vaccine safety was evaluated using national data on hospital admissions and General Practice (GP) consultations, through a self-controlled case series (SCCS) design, investigating 17 health outcomes of interest. Vaccine effectiveness (VE) against symptomatic COVID-19 disease for Delta and Omicron variants was estimated using a test-negative design (TND) and S-gene status in a prospective cohort study using the Scotland-wide Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II) surveillance platform. The waning of the VE following each dose of BNT162b2 was assessed using a matching process followed by conditional logistic regression. Findings: Between Aug 6, 2021 and Mar 1, 2022, 75.9% of the 112,609 CYP aged 16-17 years received the first and 49.0% the second COVID-19 vaccine dose. Among 237,681 CYP aged 12-15 years, the uptake was 64.5% and 37.2%, respectively. For 12-17-year-olds, BNT162b2 showed an excellent safety record, with no increase in hospital stays following vaccination for any of the 17 investigated health outcomes. In the 16-17-year-old group, VE against symptomatic COVID-19 during the Delta period was 64.2% (95% confidence interval [CI] 59.2-68.5) at 2-5 weeks after the first dose and 95.6% (77.0-99.1) at 2-5 weeks after the second dose. The respective VEs against symptomatic COVID-19 in the Omicron period were 22.8% (95% CI -6.4-44.0) and 65.5% (95% CI 56.0-73.0). In children aged 12-15 years, VE against symptomatic COVID-19 during the Delta period was 65.4% (95% CI 61.5-68.8) at 2-5 weeks after the first dose, with no observed cases at 2-5 weeks after the second dose. The corresponding VE against symptomatic COVID-19 during the Omicron period were 30.2% (95% CI 18.4-40.3) and 81.2% (95% CI 77.7-84.2). The waning of the protective effect against the symptomatic disease began after five weeks post-first and post-second dose. Interpretation: During the study period, uptake of BNT162b2 in Scotland has covered more than two-thirds of CYP aged 12-17 years with the first dose and about 40% with the second dose. We found no increased likelihood of admission to hospital with a range of health outcomes in the period after vaccination. Vaccination with both doses was associated with a substantial reduction in the risk of COVID-19 symptomatic disease during both the Delta and Omicron periods, but this protection began to wane after five weeks. Funding: UK Research and Innovation (Medical Research Council); Research and Innovation Industrial Strategy Challenge Fund; Chief Scientist's Office of the Scottish Government; Health Data Research UK; National Core Studies - Data and Connectivity.

7.
J Glob Health ; 12: 05044, 2022 Sep 23.
Article in English | MEDLINE | ID: covidwho-2040350

ABSTRACT

Background: There is considerable policy, clinical and public interest about whether children should be vaccinated against SARS-CoV-2 and, if so, which children should be prioritised (particularly if vaccine resources are limited). To inform such deliberations, we sought to identify children and young people at highest risk of hospitalization from COVID-19. Methods: We used the Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II) platform to undertake a national incident cohort analysis to investigate the risk of hospitalization among 5-17 years old living in Scotland in risk groups defined by the living risk prediction algorithm (QCOVID). A Cox proportional hazard model was used to derive hazard ratios (HR) and 95% confidence intervals (CIs) for the association between risk groups and COVID-19 hospital admission. Adjustments were made for age, sex, socioeconomic status, co-morbidity, and prior hospitalization. Results: Between March 1, 2020 and November 22, 2021, there were 146 183 (19.4% of all 752 867 children in Scotland) polymerase chain reaction (PCR) confirmed SARS-CoV-2 infections among 5-17 years old. Of those with confirmed infection, 973 (0.7%) were admitted to hospital with COVID-19. The rate of COVID-19 hospitalization was higher in those within each QCOVID risk group compared to those without the condition. Similar results were found in age stratified analyses (5-11 and 12-17 years old). Risk groups associated with an increased risk of COVID-19 hospital admission, included (adjusted HR, 95% CIs): sickle cell disease 14.35 (8.48-24.28), chronic kidney disease 11.34 (4.61-27.87), blood cancer 6.32 (3.24-12.35), rare pulmonary diseases 5.04 (2.58-9.86), type 2 diabetes 3.04 (1.34-6.92), epilepsy 2.54 (1.69-3.81), type 1 diabetes 2.48 (1.47-4.16), Down syndrome 2.45 (0.96-6.25), cerebral palsy 2.37 (1.26-4.47), severe mental illness 1.43 (0.63-3.24), fracture 1.41 (1.02-1.95), congenital heart disease 1.35 (0.82-2.23), asthma 1.28 (1.06-1.55), and learning disability (excluding Down syndrome) 1.08 (0.82-1.42), when compared to those without these conditions. Although our Cox models were adjusted for a number of potential confounders, residual confounding remains a possibility. Conclusions: In this national study, we observed an increased risk of COVID-19 hospital admissions among school-aged children with specific underlying long-term health conditions compared with children without these conditions.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Down Syndrome , Adolescent , COVID-19/epidemiology , Child , Child, Preschool , Cohort Studies , Hospitalization , Humans , SARS-CoV-2 , Scotland/epidemiology
9.
Lancet Reg Health Eur ; 19: 100428, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1983609

ABSTRACT

Background: Several countries reported a substantial reduction in asthma exacerbations associated with COVID-19 pandemic-related restrictions. However, it is not known if these early reported declines were short-term and if these have rebounded to pre-pandemic levels following easing of lockdown restrictions. Methods: We undertook a retrospective, cohort study of all asthma patients in a national primary care database of almost 10 million patients, Optimum Patient Care Database (OPCRD), identified from January 1, 2010, to December 31, 2015, using a previously validated algorithm. We subsequently followed the identified cohort of asthma patients from January 1, 2016, to October 3, 2021, and identified every asthma exacerbation episode with a validated algorithm. To quantify any pandemic-related change in exacerbations, we created a control time-series (mean of 2016-2019) and then compared the change in exacerbation rate in 2020-2021 over quarterly periods when compared with the control period (the pre-pandemic period). We undertook overall and stratified analyses by age group, sex, and English region. Findings: We identified 100,362 asthma patients (502,669 patient-years) from across England who experienced at least one exacerbation episode (298,390 exacerbation episodes during the entire follow-up). Except for the first quarter of 2020, the exacerbation rates were substantially lower (>25%) during all quarters in 2020-2021 when compared with the rates during 2016-2019 (39.7% (95% Confidence Interval (CI): 34.6, 44.9) in quarter-2, 2020; 46.5% (95%CI: 36.7, 56.4) in quarter-3, 2020; 56.3% (95%CI: 48.7, 63.9) in quarter-4, 2020; 63.2% (95%CI: 53.9, 72.5) in quarter-1, 2021; 57.7% (95%CI: 52.9, 62.4) in quarter-2, 2021; 53.3% (95%CI: 43.8, 62.8) in quarter-3, 2021). Interpretation: There was a substantial and persistent reduction in asthma exacerbations across England over the first 18 months after the first lockdown. This is unlikely to be adequately explained by changes in health-seeking behaviour, pandemic-related healthcare service disruption, or any air-quality improvements. Funding: Asthma UK, Health Data Research UK (HDR UK), Medical Research Council (MRC), National Institute for Health Research (NIHR).

10.
BMJ Open ; 12(7): e059385, 2022 07 06.
Article in English | MEDLINE | ID: covidwho-1923249

ABSTRACT

INTRODUCTION: COVID-19 is commonly experienced as an acute illness, yet some people continue to have symptoms that persist for weeks, or months (commonly referred to as 'long-COVID'). It remains unclear which patients are at highest risk of developing long-COVID. In this protocol, we describe plans to develop a prediction model to identify individuals at risk of developing long-COVID. METHODS AND ANALYSIS: We will use the national Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II) platform, a population-level linked dataset of routine electronic healthcare data from 5.4 million individuals in Scotland. We will identify potential indicators for long-COVID by identifying patterns in primary care data linked to information from out-of-hours general practitioner encounters, accident and emergency visits, hospital admissions, outpatient visits, medication prescribing/dispensing and mortality. We will investigate the potential indicators of long-COVID by performing a matched analysis between those with a positive reverse transcriptase PCR (RT-PCR) test for SARS-CoV-2 infection and two control groups: (1) individuals with at least one negative RT-PCR test and never tested positive; (2) the general population (everyone who did not test positive) of Scotland. Cluster analysis will then be used to determine the final definition of the outcome measure for long-COVID. We will then derive, internally and externally validate a prediction model to identify the epidemiological risk factors associated with long-COVID. ETHICS AND DISSEMINATION: The EAVE II study has obtained approvals from the Research Ethics Committee (reference: 12/SS/0201), and the Public Benefit and Privacy Panel for Health and Social Care (reference: 1920-0279). Study findings will be published in peer-reviewed journals and presented at conferences. Understanding the predictors for long-COVID and identifying the patient groups at greatest risk of persisting symptoms will inform future treatments and preventative strategies for long-COVID.


Subject(s)
COVID-19 , COVID-19/complications , COVID-19/epidemiology , Cohort Studies , Hospitalization , Humans , Observational Studies as Topic , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
11.
EClinicalMedicine ; 49: 101462, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1850967

ABSTRACT

Background: Uncontrolled infection and lockdown measures introduced in response have resulted in an unprecedented challenge for health systems internationally. Whether such unprecedented impact was due to lockdown itself and recedes when such measures are lifted is unclear. We assessed the short- and medium-term impacts of the first lockdown measures on hospital care for tracer non-COVID-19 conditions in England, Scotland and Wales across diseases, sexes, and socioeconomic and ethnic groups. Methods: We used OpenSAFELY (for England), EAVEII (Scotland), and SAIL Databank (Wales) to extract weekly hospital admission rates for cancer, cardiovascular and respiratory conditions (excluding COVID-19) from the pre-pandemic period until 25/10/2020 and conducted a controlled interrupted time series analysis. We undertook stratified analyses and assessed admission rates over seven months during which lockdown restrictions were gradually lifted. Findings: Our combined dataset included 32 million people who contributed over 74 million person-years. Admission rates for all three conditions fell by 34.2% (Confidence Interval (CI): -43.0, -25.3) in England, 20.9% (CI: -27.8, -14.1) in Scotland, and 24.7% (CI: -36.7, -12.7) in Wales, with falls across every stratum considered. In all three nations, cancer-related admissions fell the most while respiratory-related admissions fell the least (e.g., rates fell by 40.5% (CI: -47.4, -33.6), 21.9% (CI: -35.4, -8.4), and 19.0% (CI: -30.6, -7.4) in England for cancer, cardiovascular-related, and respiratory-related admissions respectively). Unscheduled admissions rates fell more in the most than the least deprived quintile across all three nations. Some ethnic minority groups experienced greater falls in admissions (e.g., in England, unscheduled admissions fell by 9.5% (CI: -20.2, 1.2) for Whites, but 44.3% (CI: -71.0, -17.6), 34.6% (CI: -63.8, -5.3), and 25.6% (CI: -45.0, -6.3) for Mixed, Other and Black ethnic groups respectively). Despite easing of restrictions, the overall admission rates remained lower in England, Scotland, and Wales by 20.8%, 21.6%, and 22.0%, respectively when compared to the same period (August-September) during the pre-pandemic years. This corresponds to a reduction of 26.2, 23.8 and 30.2 admissions per 100,000 people in England, Scotland, and Wales respectively. Interpretation: Hospital care for non-COVID diseases fell substantially across England, Scotland, and Wales during the first lockdown, with reductions persisting for at least six months. The most deprived and minority ethnic groups were impacted more severely. Funding: This work was funded by the Medical Research Council as part of the Lifelong Health and Wellbeing study as part of National Core Studies (MC_PC_20030). SVK acknowledges funding from the Medical Research Council (MC_UU_00022/2), and the Scottish Government Chief Scientist Office (SPHSU17). EAVE II is funded by the Medical Research Council (MR/R008345/1) with the support of BREATHE - The Health Data Research Hub for Respiratory Health (MC_PC_19004), which is funded through the UK Research and Innovation Industrial Strategy Challenge Fund and delivered through Health Data Research UK. BG has received research funding from the NHS National Institute for Health Research (NIHR), the Wellcome Trust, Health Data Research UK, Asthma UK, the British Lung Foundation, and the Longitudinal Health and Wellbeing strand of the National Core Studies programme.

12.
J R Soc Med ; 115(11): 429-438, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1820012

ABSTRACT

OBJECTIVES: COVID-19 has resulted in the greatest disruption to National Health Service (NHS) care in its over 70-year history. Building on our previous work, we assessed the ongoing impact of pandemic-related disruption on provision of emergency and elective hospital-based care across Scotland over the first year of the pandemic. DESIGN: We undertook interrupted time-series analyses to evaluate the impact of ongoing pandemic-related disruption on hospital NHS care provision at national level and across demographics and clinical specialties spanning the period 29 March 2020-28 March 2021. SETTING: Scotland, UK. PARTICIPANTS: Patients receiving hospital care from NHS Scotland. MAIN OUTCOME MEASURES: We used the percentage change of accident and emergency attendances, and emergency and planned hospital admissions during the pandemic compared to the average admission rate for equivalent weeks in 2018-2019. RESULTS: As restrictions were gradually lifted in Scotland after the first lockdown, hospital-based admissions increased approaching pre-pandemic levels. Subsequent tightening of restrictions in September 2020 were associated with a change in slope of relative weekly admissions rate: -1.98% (-2.38, -1.58) in accident and emergency attendance, -1.36% (-1.68, -1.04) in emergency admissions and -2.31% (-2.95, -1.66) in planned admissions. A similar pattern was seen across sex, socioeconomic status and most age groups, except children (0-14 years) where accident and emergency attendance, and emergency admissions were persistently low over the study period. CONCLUSIONS: We found substantial disruption to urgent and planned inpatient healthcare provision in hospitals across NHS Scotland. There is the need for urgent policy responses to address continuing unmet health needs and to ensure resilience in the context of future pandemics.


Subject(s)
COVID-19 , Patient Admission , Child , Humans , Infant, Newborn , Infant , Child, Preschool , Adolescent , Pandemics , State Medicine , COVID-19/epidemiology , Communicable Disease Control , Hospitals , Scotland/epidemiology , Emergency Service, Hospital
13.
J Glob Health ; 12: 05008, 2022.
Article in English | MEDLINE | ID: covidwho-1771702

ABSTRACT

Background: The emergence of the B.1.617.2 Delta variant of concern was associated with increasing numbers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and COVID-19 hospital admissions. We aim to study national population level SARS-CoV-2 infections and COVID-19 associated hospitalisations by vaccination status to provide insight into the association of vaccination on temporal trends during the time in which the SARS-CoV-2 Delta variant became dominant in Scotland. Methods: We used the Scotland-wide Early Pandemic Evaluation and Enhanced Surveillance (EAVE II) platform, covering the period when Delta was pervasive (May 01 to October 23, 2021). We performed a cohort analysis of every vaccine-eligible individual aged 20 or over from across Scotland. We determined the vaccination coverage, SARS-CoV-2 incidence rate and COVID-19 associated hospitalisations incidence rate. We then stratified those rates by age group, vaccination status (defined as "unvaccinated", "partially vaccinated" (1 dose), or "fully vaccinated" (2 doses)), vaccine type (BNT162b2 or ChAdOx1 nCoV-19), and coexisting conditions known to be associated with severe COVID-19 outcomes. Results: During the follow-up of 4 183 022 individuals, there were 407 405 SARS-CoV-2 positive cases with 10 441 (2.6%) associated with a hospital admission. Those vaccinated with two doses (defined as fully vaccinated in the current study) of either vaccine had lower incidence rates of SARS-CoV-2 infections and much lower incidence rates of COVID-19 associated hospitalisations than those unvaccinated in the Delta era in Scotland. Younger age groups were substantially more likely to get infected. In contrast, older age groups were much more likely to be hospitalised. The incidence rates stratified by coexisting conditions were broadly comparable with the overall age group patterns. Conclusions: This study suggests that national population level vaccination was associated with a reduction in SARS-CoV-2 infections and COVID-19 associated hospitalisation in Scotland throughout the Delta era.


Subject(s)
COVID-19 , Viral Vaccines , Adult , Aged , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Hospitalization , Humans , Incidence , SARS-CoV-2 , Vaccination , Young Adult
14.
Lancet Respir Med ; 10(2): 191-198, 2022 02.
Article in English | MEDLINE | ID: covidwho-1641759

ABSTRACT

BACKGROUND: There is an urgent need to inform policy deliberations about whether children with asthma should be vaccinated against SARS-CoV-2 and, if so, which subset of children with asthma should be prioritised. We were asked by the UK's Joint Commission on Vaccination and Immunisation to undertake an urgent analysis to identify which children with asthma were at increased risk of serious COVID-19 outcomes. METHODS: This national incident cohort study was done in all children in Scotland aged 5-17 years who were included in the linked dataset of Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II). We used data from EAVE II to investigate the risk of COVID-19 hospitalisation among children with markers of uncontrolled asthma defined by either previous asthma hospital admission or oral corticosteroid prescription in the previous 2 years. A Cox proportional hazard model was used to derive hazard ratios (HRs) and 95% CIs for the association between asthma and COVID-19 hospital admission, stratified by markers of asthma control (previous asthma hospital admission and number of previous prescriptions for oral corticosteroids within 2 years of the study start date). Analyses were adjusted for age, sex, socioeconomic status, comorbidity, and previous hospital admission. FINDINGS: Between March 1, 2020, and July 27, 2021, 752 867 children were included in the EAVE II dataset, 63 463 (8·4%) of whom had clinician-diagnosed-and-recorded asthma. Of these, 4339 (6·8%) had RT-PCR confirmed SARS-CoV-2 infection. In those with confirmed infection, 67 (1·5%) were admitted to hospital with COVID-19. Among the 689 404 children without asthma, 40 231 (5·8%) had confirmed SARS-CoV-2 infections, of whom 382 (0·9%) were admitted to hospital with COVID-19. The rate of COVID-19 hospital admission was higher in children with poorly controlled asthma than in those with well controlled asthma or without asthma. When using previous hospital admission for asthma as the marker of uncontrolled asthma, the adjusted HR was 6·40 (95% CI 3·27-12·53) for those with poorly controlled asthma and 1·36 (1·02-1·80) for those with well controlled asthma, compared with those with no asthma. When using oral corticosteroid prescriptions as the marker of uncontrolled asthma, the adjusted HR was 3·38 (1·84-6·21) for those with three or more prescribed courses of corticosteroids, 3·53 (1·87-6·67) for those with two prescribed courses of corticosteroids, 1·52 (0·90-2·57) for those with one prescribed course of corticosteroids, and 1·34 (0·98-1·82) for those with no prescribed course, compared with those with no asthma. INTERPRETATION: School-aged children with asthma with previous recent hospital admission or two or more courses of oral corticosteroids are at markedly increased risk of COVID-19 hospital admission and should be considered a priority for vaccinations. This would translate into 9124 children across Scotland and an estimated 109 448 children across the UK. FUNDING: UK Research and Innovation (Medical Research Council), Research and Innovation Industrial Strategy Challenge Fund, Health Data Research UK, and Scottish Government.


Subject(s)
Asthma , COVID-19 , Adolescent , Asthma/complications , Asthma/drug therapy , Asthma/epidemiology , Child , Child, Preschool , Cohort Studies , Hospitalization , Hospitals , Humans , SARS-CoV-2 , Scotland/epidemiology
17.
J Glob Health ; 11: 05026, 2021.
Article in English | MEDLINE | ID: covidwho-1614229

ABSTRACT

BACKGROUND: The dynamics of acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and severity of disease among children and young people (CYP) across different settings are of considerable clinical, public health and societal interest. Severe COVID-19 cases, requiring hospitalisations, and deaths have been reported in some CYP suggesting a need to extend vaccinations to these age groups. As part of the ongoing Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II) study, we aim to investigate the uptake, effectiveness and safety of COVID-19 vaccines in children and young people (CYP) aged 0 to 17 years in Scotland. Specifically, we will estimate: (i) uptake of vaccines against COVID-19, (ii) vaccine effectiveness (VE) against the outcomes of symptomatic SARS-CoV-2 infection, hospitalisation, intensive care unit (ICU) admissions, and death; (iii) VE for first/second dose timing among different age groups and risk groups; and (iv) the safety of vaccines. METHODS AND ANALYSIS: We will conduct an open prospective cohort study classifying exposure as time-varying. We will compare outcomes amongst first dose vaccinated and second dose vaccinated CYP to those not yet vaccinated. A Test Negative Design (TND) case control study will be nested within this national cohort to investigate VE against symptomatic infection. The primary outcomes will be (i) uptake of vaccines against COVID-19, (ii) time to COVID-19 infection, hospitalisation, ICU admissions or death, and (iii) adverse events related to vaccines. Vaccination status (unvaccinated, one dose and two doses) will be defined as a time-varying exposure. Data from multiple sources will be linked using a unique identifier. We will conduct descriptive analyses to explore trends in vaccine uptake, and association between different exposure variables and vaccine uptake will be determined using multivariable logistic regression models. VE will be assessed from time-dependent Cox models or Poisson regression models, adjusted for relevant confounders, including age, sex, socioeconomic status, and comorbidities. We will employ self-controlled study designs to determine the risk of adverse events following COVID-19 vaccination. ETHICS AND DISSEMINATION: Ethics approval was obtained from the National Research Ethics Committee, South East Scotland 02. We will present findings of this study at international conferences, in peer-reviewed journals and to policy-makers.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adolescent , Case-Control Studies , Child , Humans , Pandemics , Prospective Studies , SARS-CoV-2 , Scotland/epidemiology , Vaccine Efficacy
18.
Lancet ; 399(10319): 25-35, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-1586218

ABSTRACT

BACKGROUND: Reports suggest that COVID-19 vaccine effectiveness is decreasing, but whether this reflects waning or new SARS-CoV-2 variants-especially delta (B.1.617.2)-is unclear. We investigated the association between time since two doses of ChAdOx1 nCoV-19 vaccine and risk of severe COVID-19 outcomes in Scotland (where delta was dominant), with comparative analyses in Brazil (where delta was uncommon). METHODS: In this retrospective, population-based cohort study in Brazil and Scotland, we linked national databases from the EAVE II study in Scotland; and the COVID-19 Vaccination Campaign, Acute Respiratory Infection Suspected Cases, and Severe Acute Respiratory Infection/Illness datasets in Brazil) for vaccination, laboratory testing, clinical, and mortality data. We defined cohorts of adults (aged ≥18 years) who received two doses of ChAdOx1 nCoV-19 and compared rates of severe COVID-19 outcomes (ie, COVID-19 hospital admission or death) across fortnightly periods, relative to 2-3 weeks after the second dose. Entry to the Scotland cohort started from May 19, 2021, and entry to the Brazil cohort started from Jan 18, 2021. Follow-up in both cohorts was until Oct 25, 2021. Poisson regression was used to estimate rate ratios (RRs) and vaccine effectiveness, with 95% CIs. FINDINGS: 1 972 454 adults received two doses of ChAdOx1 nCoV-19 in Scotland and 42 558 839 in Brazil, with longer follow-up in Scotland because two-dose vaccination began earlier in Scotland than in Brazil. In Scotland, RRs for severe COVID-19 increased to 2·01 (95% CI 1·54-2·62) at 10-11 weeks, 3·01 (2·26-3·99) at 14-15 weeks, and 5·43 (4·00-7·38) at 18-19 weeks after the second dose. The pattern of results was similar in Brazil, with RRs of 2·29 (2·01-2·61) at 10-11 weeks, 3·10 (2·63-3·64) at 14-15 weeks, and 4·71 (3·83-5·78) at 18-19 weeks after the second dose. In Scotland, vaccine effectiveness decreased from 83·7% (95% CI 79·7-87·0) at 2-3 weeks, to 75·9% (72·9-78·6) at 14-15 weeks, and 63·7% (59·6-67·4) at 18-19 weeks after the second dose. In Brazil, vaccine effectiveness decreased from 86·4% (85·4-87·3) at 2-3 weeks, to 59·7% (54·6-64·2) at 14-15 weeks, and 42·2% (32·4-50·6) at 18-19 weeks. INTERPRETATION: We found waning vaccine protection of ChAdOx1 nCoV-19 against COVID-19 hospital admissions and deaths in both Scotland and Brazil, this becoming evident within three months of the second vaccine dose. Consideration needs to be given to providing booster vaccine doses for people who have received ChAdOx1 nCoV-19. FUNDING: UK Research and Innovation (Medical Research Council), Scottish Government, Research and Innovation Industrial Strategy Challenge Fund, Health Data Research UK, Fiocruz, Fazer o Bem Faz Bem Programme; Conselho Nacional de Desenvolvimento Científico e Tecnológico, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro. TRANSLATION: For the Portuguese translation of the abstract see Supplementary Materials section.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/mortality , COVID-19/prevention & control , ChAdOx1 nCoV-19/administration & dosage , Vaccine Efficacy , Adolescent , Adult , Aged , Aged, 80 and over , Brazil , Female , Hospitalization , Humans , Immunization, Secondary , Male , Middle Aged , Retrospective Studies , SARS-CoV-2/immunology , Scotland/epidemiology , Time Factors , Vaccination
19.
J R Soc Med ; 115(1): 22-30, 2022 01.
Article in English | MEDLINE | ID: covidwho-1480338

ABSTRACT

OBJECTIVES: We investigated the association between multimorbidity among patients hospitalised with COVID-19 and their subsequent risk of mortality. We also explored the interaction between the presence of multimorbidity and the requirement for an individual to shield due to the presence of specific conditions and its association with mortality. DESIGN: We created a cohort of patients hospitalised in Scotland due to COVID-19 during the first wave (between 28 February 2020 and 22 September 2020) of the pandemic. We identified the level of multimorbidity for the patient on admission and used logistic regression to analyse the association between multimorbidity and risk of mortality among patients hospitalised with COVID-19. SETTING: Scotland, UK. PARTICIPANTS: Patients hospitalised due to COVID-19. MAIN OUTCOME MEASURES: Mortality as recorded on National Records of Scotland death certificate and being coded for COVID-19 on the death certificate or death within 28 days of a positive COVID-19 test. RESULTS: Almost 58% of patients admitted to the hospital due to COVID-19 had multimorbidity. Adjusting for confounding factors of age, sex, social class and presence in the shielding group, multimorbidity was significantly associated with mortality (adjusted odds ratio 1.48, 95%CI 1.26-1.75). The presence of multimorbidity and presence in the shielding patients list were independently associated with mortality but there was no multiplicative effect of having both (adjusted odds ratio 0.91, 95%CI 0.64-1.29). CONCLUSIONS: Multimorbidity is an independent risk factor of mortality among individuals who were hospitalised due to COVID-19. Individuals with multimorbidity could be prioritised when making preventive policies, for example, by expanding shielding advice to this group and prioritising them for vaccination.


Subject(s)
COVID-19/mortality , Hospital Mortality , Hospitalization/statistics & numerical data , Multimorbidity , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Scotland/epidemiology , Social Determinants of Health , Sociodemographic Factors
20.
Lancet Respir Med ; 9(12): 1439-1449, 2021 12.
Article in English | MEDLINE | ID: covidwho-1440430

ABSTRACT

BACKGROUND: The UK COVID-19 vaccination programme has prioritised vaccination of those at the highest risk of COVID-19 mortality and hospitalisation. The programme was rolled out in Scotland during winter 2020-21, when SARS-CoV-2 infection rates were at their highest since the pandemic started, despite social distancing measures being in place. We aimed to estimate the frequency of COVID-19 hospitalisation or death in people who received at least one vaccine dose and characterise these individuals. METHODS: We conducted a prospective cohort study using the Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II) national surveillance platform, which contained linked vaccination, primary care, RT-PCR testing, hospitalisation, and mortality records for 5·4 million people (around 99% of the population) in Scotland. Individuals were followed up from receiving their first dose of the BNT162b2 (Pfizer-BioNTech) or ChAdOx1 nCoV-19 (Oxford-AstraZeneca) COVID-19 vaccines until admission to hospital for COVID-19, death, or the end of the study period on April 18, 2021. We used a time-dependent Poisson regression model to estimate rate ratios (RRs) for demographic and clinical factors associated with COVID-19 hospitalisation or death 14 days or more after the first vaccine dose, stratified by vaccine type. FINDINGS: Between Dec 8, 2020, and April 18, 2021, 2 572 008 individuals received their first dose of vaccine-841 090 (32·7%) received BNT162b2 and 1 730 918 (67·3%) received ChAdOx1. 1196 (<0·1%) individuals were admitted to hospital or died due to COVID-19 illness (883 hospitalised, of whom 228 died, and 313 who died due to COVID-19 without hospitalisation) 14 days or more after their first vaccine dose. These severe COVID-19 outcomes were associated with older age (≥80 years vs 18-64 years adjusted RR 4·75, 95% CI 3·85-5·87), comorbidities (five or more risk groups vs less than five risk groups 4·24, 3·34-5·39), hospitalisation in the previous 4 weeks (3·00, 2·47-3·65), high-risk occupations (ten or more previous COVID-19 tests vs less than ten previous COVID-19 tests 2·14, 1·62-2·81), care home residence (1·63, 1·32-2·02), socioeconomic deprivation (most deprived quintile vs least deprived quintile 1·57, 1·30-1·90), being male (1·27, 1·13-1·43), and being an ex-smoker (ex-smoker vs non-smoker 1·18, 1·01-1·38). A history of COVID-19 before vaccination was protective (0·40, 0·29-0·54). INTERPRETATION: COVID-19 hospitalisations and deaths were uncommon 14 days or more after the first vaccine dose in this national analysis in the context of a high background incidence of SARS-CoV-2 infection and with extensive social distancing measures in place. Sociodemographic and clinical features known to increase the risk of severe disease in unvaccinated populations were also associated with severe outcomes in people receiving their first dose of vaccine and could help inform case management and future vaccine policy formulation. FUNDING: UK Research and Innovation (Medical Research Council), Research and Innovation Industrial Strategy Challenge Fund, Scottish Government, and Health Data Research UK.


Subject(s)
BNT162 Vaccine , COVID-19 , ChAdOx1 nCoV-19 , Hospitalization/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , BNT162 Vaccine/administration & dosage , COVID-19/mortality , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19/administration & dosage , Female , Hospitals , Humans , Male , Middle Aged , Prospective Studies , SARS-CoV-2 , Scotland/epidemiology , Vaccination , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL